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Global Division Theorem
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Remarks
1 This is a generalization of Castelnuovo
Mumford regularity

L ample and globally generated

a Ox

HOCX 0 14 tfCX d CkxttnDUP

HEX O CKxtmLtP
is surjective

2 The bounds in both the statements

are sharp a Ma k closedpoint

J Mk Ox for Ken
M k h

m2 Kent I
i



X P f OLD P OLD

II Integral closure of Ideals
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All multiplier ideals are integrally closed

Note Icac T.cat
In particular a cat c Tca

Characterizations of integralclosure
X affine a c ideal
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Iv There exists a non zero element
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Prop Minimal reductions exist

Pf Sketch pick in general linear

combinations of generators of a
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Skoda complexes
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Consider Kosaul complex determinedby
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Note Forjoo RIM G Ami iµ4 o by gluing

Skodm is just got by applying

µ to this Moreover all teens
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local vanishing theorem

This proves the exactness of Skoda
Proofs of Main Theorems

Skoda's Theorem

Recall CZ n dimX

Icao a Icac 1

Pf The question is local so assume X affine
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a Icac A CTCae always true
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Proof Global Division Theorem X proj

P nef and big divisor L integral
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Now taking Hot of the above

complex remains exact due to
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because a 0 4 is globally

generated

this completes the proof


